Как вычислить площадь треугольника. Как найти площадь треугольника. Для вычисления площади треугольника можно воспользоваться приведенными в статье формулами.

Частный случай: равносторонний треугольник

В том случае если нам известны параметры каждой стороны нашего треугольника, мы можем рассчитать площадь фигуры по формуле Герона. Для её упрощения следует применить новую величину, так называемый полупериметр, который является суммой всех сторон треугольника, которая разделена пополам.

После получения значения полупериметра, Вы можете приступать к расчёту площади по руководствуясь следующей формулой: S = sqrt(p(p-a)(p-b)(p-c)), в которой «p» – полупериметр, «a,b,c» – стороны фигуры и sqrt –квадратный корень.

Рассмотрим на примере вычисление площади треугольника по формуле Герона.

p = (a b c)/ 2  где p – половина периметра треугольника.

таким образом S = √ p ( p – a ) ( p – b ) ( p – c ) .

(Это также называется формулой Герона)

Треугольник со сторонами a = 4, b = 5, c = 3.

Задание:Найдите площадь треугольника

p = (3 4 5)/ 2= 6

S = √ 6 ( 6 – 3 ) ( 6 – 4 ) ( 6 – 5 ) =

√ 6 ⋅ 3 ⋅ 2 ⋅ 1 = √ 36 =6

Ответ: 6

Обозначения, принятые в них: стороны — а, в, с; высоты на соответствующие стороны на, нв, нс.

1. Площадь треугольника вычисляется, как произведение ½, стороны и высоты, опущенной на нее. S = ½ * а * на. Аналогично следует записать формулы для двух остальных сторон.

2. Формула Герона, в которой фигурирует полупериметр (его принято обозначать маленькой буквой р, в отличии от полного периметра). Полупериметр необходимо сосчитать так: сложить все стороны и разделить их на 2. Формула полупериметра: р = (а в с) / 2. Тогда равенство для площади фигуры выглядит так: S = √ (р * (р — а) * (р — в) * (р — с)).

3. Если не хочется использовать полупериметр, то пригодится такая формула, в которой присутствуют только длины сторон: S = ¼ * √ ((а в с) * (в с — а) * (а с — в) * (а в — с)). Она несколько длиннее предыдущей, но выручит, если забылось, как находить полупериметр.

Обозначения, которые требуются для прочтения формул: α, β, γ — углы. Они лежат напротив сторон а, в, с, соответственно.

1. По ней половина произведения двух сторон и синуса угла между ними равна площади треугольника. То есть: S = ½ а * в * sin γ. Подобным образом следует записать формулы для двух других случаев.

2. Площадь треугольника можно вычислить по одной стороне и трем известным углам. S = (а2 * sin β * sin γ) / (2 sin α).

3. Существует еще формула с одной известной стороной и двумя прилежащими к ней углами. Она выглядит таким образом: S = с2 / (2 (ctg α ctg β)).

Две последние формулы являются не самыми простыми. Запомнить их довольно сложно.

Дополнительные обозначения: r, R — радиусы. Первый используется для радиуса вписанной окружности. Второй — для описанной.

Предлагаем ознакомиться:  Как научиться решать задачи по аналитической геометрии? Задача с треугольником

1. Первая формула, по которой вычисляется площадь треугольника, связана с полупериметром. S = р * r. По-другому ее можно записать так: S = ½ r * (а в с).

2. Во втором случае потребуется перемножить все стороны треугольника и разделить их на учетверенный радиус описанной окружности. В буквенном выражении это выглядит так: S = (а * в * с) / (4R).

3. Третья ситуация позволяет обойтись без знания сторон, но потребуются значения всех трех углов. S = 2 R2 * sin α * sin β * sin γ.

Это самая простая ситуация, поскольку требуется знание только длины обоих катетов. Они обозначаются латинскими буквами а и в. Площадь прямоугольного треугольника равна половине площади достроенного к нему прямоугольника.

Математически это выглядит так: S = ½ а * в. Она запоминается проще всего. Потому что выглядит, как формула для площади прямоугольника, только появляется еще дробь, обозначающая половину.

S = ½ в √((a ½ в)*(a — ½ в)).

S = ¼ в √(4 * a2 — b2).

Несколько проще, чем для произвольного треугольника, выглядит формула площади, если известны боковые стороны и угол между ними. S = ½ a2 * sin β.

S = (а2√3) / 4.

Самой простой является ситуация, когда прямоугольный треугольник начерчен так, что его катеты совпадают с линиями бумаги. Тогда требуется просто посчитать число клеточек, укладывающихся в катеты. Потом перемножить их и разделить на два.

Когда треугольник остроугольный или тупоугольный, его нужно дорисовать до прямоугольника. Тогда в получившейся фигуре будет 3 треугольника. Один — тот что дан в задаче. А два других — вспомогательные и прямоугольные. Определить площади двух последних нужно по описанному выше способу. Потом сосчитать площадь прямоугольника и вычесть из него те, что вычислены для вспомогательных. Площадь треугольника определена.

Гораздо сложнее оказывается ситуация, в которой ни одна из сторон треугольника не совпадает с линиями бумаги. Тогда его нужно вписать в прямоугольник так, чтобы вершины исходной фигуры лежали на его сторонах. В этом случае вспомогательных прямоугольных треугольников будет три.

Условие. У некоторого треугольника известны стороны. Они равны 3, 5 и 6 см. Необходимо узнать его площадь.

Предлагаем ознакомиться:  Как определить кубометр

Решение. Первым делом полагается сосчитать полупериметр треугольника. Составить сумму всех трех, данных в задаче, чисел и разделить ее на два. Простые вычисления приводят к числу 7. Это значение полупериметра.

Теперь можно вычислять площадь треугольника по указанной выше формуле. Под квадратным корнем оказывается произведение четырех чисел: 7, 4, 2 и 1. То есть площадь равна √(4 * 14) = 2 √(14).

Если не требуется большая точность, то можно извлечь квадратный корень из 14. Он равен 3,74. Тогда площадь будет равна 7,48.

Ответ. S = 2 √14 см2 или 7,48 см2.

Условие. Один катет прямоугольного треугольника больше, чем второй на 31 см. Требуется узнать их длины, если площадь треугольника равна 180 см2.Решение. Придется решить систему из двух уравнений. Первое связано с площадью. Второе — с отношением катетов, которое дано в задаче.180 = ½ а * в;

а = в 31.Сначала значение «а» нужно подставить в первое уравнение. Получится: 180 = ½ (в 31) * в. В нем только одна неизвестная величина, поэтому его легко решить. После раскрытия скобок получается квадратное уравнение: в2 31 в — 360 = 0. Оно дает два значения для «в»: 9 и — 40. второе число не подходит в качестве ответа, так как длина стороны треугольника не может быть отрицательной величиной.

Осталось вычислить второй катет: прибавить к полученному числу 31. Получается 40. Это искомые в задаче величины.

Ответ. Катеты треугольника равны 9 и 40 см.

Условие. Площадь некоторого треугольника 60 см2. Необходимо вычислить одну из его сторон, если вторая сторона равна 15 см, а угол между ними равен 30º.

60 = ½ а * 15 * sin 30º. Здесь синус 30 градусов равен 0,5.

После преобразований «а» оказывается равным 60 / (0,5 * 0,5 * 15). То есть 16.

Ответ. Искомая сторона равна 16 см.

Условие. Вершина квадрата со стороной 24 см совпадает с прямым углом треугольника. Две другие лежат на катетах. Третья принадлежит гипотенузе. Длина одного из катетов равна 42 см. Чему равна площадь прямоугольного треугольника?

Решение. Рассмотрим два прямоугольных треугольника. Первый — заданный в задаче. Второй — опирается на известный катет исходного треугольника. Они подобны, так как имеют общий угол и образованы параллельными прямыми.

Тогда отношения их катетов равны. Катеты меньшего треугольника равны 24 см (сторона квадрата) и 18 см (заданный катет 42 см вычесть сторону квадрата 24 см). Соответствующие катеты большого треугольника — 42 см и х см. Именно этот «х» нужен для того, чтобы вычислить площадь треугольника.

Предлагаем ознакомиться:  Как узнать номер рейса самолета по фамилии и дате вылета

18/42 = 24/х, то есть х = 24 * 42 / 18 = 56 (см).

Тогда площадь равна произведению 56 и 42, разделенному на два, то есть 1176 см2.

Ответ. Искомая площадь равна 1176 см2.

S= a*h/2,где а – это длина стороны треугольника, площадь которого нужно найти, h-длина проведенной к основанию высоты.

Формула Герона

S=√р*(р-а)*(р-b)*(p-c),где √-это квадратный корень, p-полупериметр треугольника, a,b,c-это длина каждой стороны треугольника. Полупериметр треугольника можно вычислить по формуле p=(a b c)/2.

S = (a*b*sin(α))/2,где b,c -это длина сторон треугольника, sin(α)- синус угла между двумя сторонами.

S=p*r,где p-это полупериметр треугольника, площадь которого нужно найти, r-радиус вписанной в этот треугольник окружности.

S= (a*b*c)/4*R,где a,b,c-это величина длины каждой стороны треугольника, R- радиус описанной вокруг треугольника окружности.

Декартовы координаты точек – это координаты в системе xOy, где x- это абсцисса, y- ордината. Декартовой системой координат xOy на плоскости называют взаимно перпендикулярные числовых оси Oх и Oy с общим началом отсчета в точке О. Если заданы координаты точек на этой плоскости в виде A(x1, y1), B(x2, y2) и C(x3, y3), то можно вычислить площадь треугольника по следующей формуле, которая получена из векторного произведения двух векторов.S = |(x1 – x3)•(y2 – y3) – (x2 – x3)•(y1 – y3)|/2,где || обозначает модуль.

Прямоугольный треугольник – это такой треугольник, у которого один угол составляет 90 градусов. Такой угол у треугольника может быть лишь один.

S= a*b/2,где a,b – это длина катетов. Катетами называются стороны, прилежащие к прямому углу.

S = a*b*sin(α)/ 2,где a, b – это катеты треугольника, а sin(α)- это синус угла, в котором пересекаются прямые a, b.

S = a*b/2*tg(β),где a, b – это катеты треугольника, tg(β) – это тангенс угла, в котором соединяются катеты a, b.

Равнобедренным называется такой треугольник, который имеет две равные стороны. Эти стороны называются боковыми, а другая сторона является основой. Для вычисления площади равнобедренного треугольника можно использовать одну из следующих формул.

S=h*c/2,где с – это основание треугольника, h-это высота треугольника, опущенного к основанию.

Загрузка ...
Adblock detector