Сила тяжести — урок. Физика, 7 класс.

Описание закона всемирного тяготения

Эта постоянная, как видно, очень мала, поэтому силы тяготения между телами, имеющими небольшие массы, тоже малы и практически не ощущаются. Однако движение космических тел полностью определяется гравитацией. Наличие всемирного тяготения или, другими словами, гравитационного взаимодействия объясняет, на чем «держатся» Земля и планеты, и почему они двигаются вокруг Солнца по определенным траекториям, а не улетают от него прочь.

С помощью закона всемирного тяготения также можно рассчитать космические скорости. Например, минимальная скорость, при которой тело, движущееся горизонтально над поверхностью Земли, не упадёт на неё, а будет двигаться по круговой орбите – 7,9 км/с (первая космическая скорость). Для того, чтобы покинуть Землю, т.е. преодолеть ее гравитационное притяжение, тело должно иметь скорость 11,2 км/с, (вторая космическая скорость).

Гравитация является одним из самых удивительных феноменов природы. В отсутствии сил гравитации существование Вселенной было бы невозможно, Вселенная не могла бы даже возникнуть. Гравитация ответственна за многие процессы во Вселенной – ее рождение, существование порядка вместо хаоса. Природа гравитации до сих пор до конца неразгаданна. До настоящего времени никто не смог разработать достойный механизм и модель гравитационного взаимодействия.

История

Аристотель объяснял силу тяжести движением тяжёлых физических стихий (земля, вода) к своему естественному месту (центру Вселенной внутри Земли), причём скорость тем больше, чем ближе тяжёлое тело к нему[13].

Архимед рассмотрел вопрос о центре тяжести параллелограмма, треугольника, трапеции и параболического сегмента. В сочинении «О плавающих телах» Архимед доказал закон гидростатики, носящий его имя[13].

Иордан Неморарий в сочинении «О тяжестях» при рассмотрении грузов на наклонной плоскости разлагал их силы тяжести на нормальную и параллельную наклонной плоскости составляющие, был близок к определению статического момента[14].

Стевин экспериментально определил, что тела разных масс падают с одинаковым ускорением, установил теоремы о давлении жидкости в сосудах (давление зависит только от глубины и не зависит от величины, формы и объёма сосуда) и о равновесии грузов на наклонной плоскости (на наклонных плоскостях равной высоты силы, действующие со стороны уравновешивающихся грузов вдоль наклонных плоскостей, обратно пропорциональны длинам этих плоскостей).

Галилей экспериментально исследовал законы падения тел (ускорение не зависит от веса тела), колебаний маятников (период колебаний не зависит от веса маятника) и движения по наклонной плоскости[16].

Гюйгенс создал классическую теорию движения маятника, оказавшую значительное влияние на теорию тяготения[16].

Декарт разработал кинетическую теорию тяготения, объяснявшую силу тяжести взаимодействием тел с небесным флюидом, выдвинул гипотезу о зависимости силы тяжести от расстояния между тяжёлым телом и центром Земли[16].

Ньютон из равенства ускорений падающих тел и второго закона Ньютона сделал вывод о пропорциональности силы тяжести массам тел и установил, что сила тяжести является одним из проявлений силы всемирного тяготения[17][18]. Для проверки этой идеи он сравнил ускорение свободного падения тел у поверхности Земли с ускорением Луны на орбите, по которой она движется относительно Земли.[19]

Предлагаем ознакомиться:  СТС на машину - что это такое и где можно получить? Необходимые документы

Эйнштейн объяснил факт равенства ускорений падающих тел независимо от их массы (эквивалентность инертной и тяжёлой массы)
как следствие принципа эквивалентности равномерно ускоренной системы отсчёта и системы отсчёта, находящейся в гравитационном поле[20].

Сферически симметричное тело

F=G⋅M⋅mR2,{displaystyle F=Gcdot {Mcdot m over R^{2}},}F = G cdot {M cdot mover R^2},

где G{displaystyle G} — гравитационная постоянная, равная 6,67384(80)·10−11м3·с−2·кг−1, а R{displaystyle R} — радиус тела. Данное соотношение справедливо в предположении, что распределение массы по объёму тела сферически симметрично. В этом случае сила гравитационного притяжения направлена к центру тела.

Q=maω2,{displaystyle Q=maomega ^{2},}Q=m aomega^2,

где a{displaystyle a} — расстояние между частицей и осью вращения рассматриваемого астрономического тела, а ω{displaystyle omega } — угловая скорость его вращения. Центробежная сила инерции перпендикулярна оси вращения и направлена в сторону от неё.

Поправки, вносимые общей теорией относительности в закон всемирного тяготения Ньютона, в условиях Земли и других планет крайне малы (модуль гравитационного потенциала на поверхности Земли, равный половине квадрата второй космической скоростиvII{displaystyle v_{II}}, крайне мал по сравнению с квадратом скорости светаc{displaystyle c}: vII22c2∼10−10{displaystyle {frac {v_{II}^{2}}{2c^{2}}}sim 10^{-10}})[21].

Земля

F→=Gm∫MdMR2R→R.{displaystyle {vec {F}}=Gmint limits _{M}{{dM} over {R^{2}}}{{vec {R}} over R}.}

Здесь dM{displaystyle dM} — элемент массы Земли, R→=r→−r→′,{displaystyle {vec {R}}={vec {r}}-{vec {r}}’,} а r→{displaystyle {vec {r}}} и r→′{displaystyle {{vec {r}}’}} — радиус-векторы точки измерения и элемента Земли соответственно. Интегрирование при этом выполняется по всей массе Земли.

В векторной форме выражение для центробежной силы инерции можно записать в виде

Q→=mω2R→0,{displaystyle {vec {Q}}=momega ^{2}{{vec {R}}_{0}},}{displaystyle {vec {Q}}=momega ^{2}{{vec {R}}_{0}},}

где R→0{displaystyle {{vec {R}}_{0}}} — вектор, перпендикулярный оси вращения и проведённый от неё к данной материальной точке, находящейся вблизи поверхности Земли.

P→=F→ Q→.{displaystyle {vec {P}}={vec {F}} {vec {Q}}.}{displaystyle {vec {P}}={vec {F}} {vec {Q}}.}
P=9,780318(1 0,005302sin⁡φ−0,000006sin2⁡2φ)m−0,000003086Hm.{displaystyle P=9{,}780318(1 0{,}005302sin varphi -0{,}000006sin ^{2}2varphi )m-0{,}000003086Hm.}{displaystyle P=9{,}780318(1 0{,}005302sin varphi -0{,}000006sin ^{2}2varphi )m-0{,}000003086Hm.}
α≈0,0018sin⁡2φ{displaystyle alpha approx 0{,}0018sin {2varphi }}{displaystyle alpha approx 0{,}0018sin {2varphi }}.

Он изменяется в пределах от нуля (на экваторе, где φ=0∘{displaystyle varphi =0^{circ }} и на полюсах, где φ=90∘{displaystyle varphi =90^{circ }}) до 0,0018{displaystyle 0{,}0018} рад или 6′{displaystyle 6′} (на широте 45∘{displaystyle 45^{circ }}).

Потенциальной энергией поднятого над Землей тела называется взятая с обратным знаком работа силы тяжести, совершаемая при перемещении тела с поверхности Земли в это положение. Она равна Ep=γMm(1Rz−1R){displaystyle E_{p}=gamma Mm({frac {1}{R_{z}}}-{frac {1}{R}})},
где γ{displaystyle gamma } — гравитационная постоянная, M{displaystyle M} — масса земли, m{displaystyle m} — масса тела, Rz{displaystyle R_{z}} — радиус Земли, R{displaystyle R} — расстояние до центра Земли тела.

При удалении тела не небольшие по сравнению с радиусом Земли расстояния от поверхности Земли поле тяготения можно считать однородным, то есть ускорение свободного падения постоянно. В этом случае при подъеме тела массой m{displaystyle m} на высоту h{displaystyle h} от поверхности Земли сила тяжести совершает работу A=−mgh{displaystyle A=-mgh}.

Поэтому потенциальная энергия тела: Ep=mgh{displaystyle E_{p}=mgh}. Потенциальная энергия тела может иметь как положительные, так и отрицательные значения. Тело, находящееся на глубине h{displaystyle h} от поверхности Земли обладает отрицательным значением потенциальной энергии Ep=−mgh{displaystyle E_{p}=-mgh}[24].

При испарении воды с поверхности Земли солнечная радиация трансформируется в потенциальную энергию водяного пара в атмосфере. Затем при выпадении атмосферных осадков на сушу она переходит при стоке в кинетическую энергию и совершает эрозионную работу в процессе переноса денудационного материала всей суши и делает возможным жизнь органического мира на Земле[25].

Предлагаем ознакомиться:  Учет основных средств стоимостью до 3 000 рублей (счет 21) || Как оприходовать основные средства в бюджете

Потенциальная энергия перемещаемых тектоническими процессами масс горных пород в основном тратится на перемещение продуктов разрушения горных пород с повышенных участков поверхности на нижерасположенные[26].

Движение тел под действием силы тяжести

В том случае, когда модуль перемещения тела много меньше расстояния до центра Земли, то можно считать силу тяжести постоянной, а движение тела равноускоренным. Если начальная скорость тела отлична от нуля и её вектор направлен не по вертикали, то под действием силы тяжести тело движется по параболической траектории.

При бросании тела с некоторой высоты параллельно поверхности Земли дальность полёта увеличивается с ростом начальной скорости. При больших значениях начальной скорости для вычисления траектории тела необходимо учитывать шарообразную форму Земли и изменение направления силы тяжести в разных точках траектории.

При некотором значении скорости, называемом первой космической скоростью, тело, брошенное по касательной к поверхности Земли, под действием силы тяжести при отсутствии сопротивления со стороны атмосферы может двигаться вокруг Земли по окружности, не падая на Землю. При скорости, превышающую вторую космическую скорость, тело уходит от поверхности Земли в бесконечность по гиперболической траектории. При скоростях, промежуточных между первой и второй космическими, тело движется вокруг Земли по эллиптической траектории[23].

Значение в природе

Сила тяжести играет важную роль в процессах эволюции звёзд. Для звёзд, находящихся на этапе главной последовательности своей эволюции, сила тяжести является одним из важных факторов, обеспечивающих условия, необходимые для термоядерного синтеза. На заключительных этапах эволюции звёзд, в процессе их коллапса, благодаря силе тяжести, не скомпенсированной силами внутреннего давления, звёзды превращаются в нейтронные звёзды или чёрные дыры.

Без потенциальной энергии силы тяжести, непрерывно переходящей в кинетическую, круговорот вещества и энергии на Земле был бы невозможен[30].

Сила тяжести играет очень важную роль для жизни на Земле[31]. Только благодаря ей у Земли есть атмосфера. Вследствие силы тяжести, действующей на воздух, существует атмосферное давление[32].

У всех живых организмов с нервной системой есть рецепторы, определяющие величину и направление силы тяжести и служащие для ориентировки в пространстве. У позвоночных организмов, в том числе человека, величину и направление силы тяжести определяет вестибулярный аппарат[33].

Наличие силы тяжести привело к возникновению у всех многоклеточных наземных организмов прочных скелетов, необходимых для её преодоления. У водных живых организмов силу тяжести уравновешивает гидростатическая сила[34].

Предлагаем ознакомиться:  Мегафон бонус активировать баллы - Всё о Мегафоне

Роль силы тяжести в процессах жизнедеятельности организмов изучает гравитационная биология[35].

Применение в технике

Сила тяжести и принцип эквивалентности инертной и гравитационной массы используются для определения масс предметов путём их взвешивания на весах. Сила тяжести используется при отстойной сепарации газовых и жидких смесей, в некоторых типах часов, в отвесах и противовесах, машине Атвуда, машине Обербека и жидкостных барометрах.

Точные измерения силы тяжести и её градиента (гравиметрия) используются при исследовании внутреннего строения Земли и при гравиразведке различных полезных ископаемых[36].

Устойчивость тела в поле силы тяжести

Для тела в поле силы тяжести, опирающегося на одну точку (например при подвешивании тела за одну точку или помещении шара на плоскость) для устойчивого равновесия необходимо, что бы центр тяжести тела занимал наинизшее положение по сравнению со всеми возможными соседними положениями[37].

Для тела в поле силы тяжести, опирающегося на несколько точек (например, стол) или на целую площадку (например, ящик на горизонтальной плоскости) для устойчивого равновесия необходимо, чтобы вертикаль, проведённая через центр тяжести, проходила внутри площади опоры тела. Площадью опоры тела называется контур, соединяющий точки опоры или внутри площадки, на которое опирается тело[37].

Методы измерения силы тяжести

Силу тяжести измеряют динамическими и статическими методами. Динамические методы используют наблюдение за движением тела под действием силы тяжести и измеряют время перехода тела из одного заранее определённого положения в другое. Они используют: колебания маятника, свободное падение тела, колебания струны с грузом.

Измерения силы тяжести бывают абсолютными и относительными. Абсолютные измерения определяют полное значение силы тяжести в заданной точке. Относительные измерения определяют разность силы тяжести в заданной точке и некоторого другого, заранее известного значения. Приборы, предназначенные для относительных измерений силы тяжести, называются гравиметрами.

Динамические методы определения силы тяжести могут быть как относительными, так и абсолютными, статические — только относительными.

Сила тяжести на других планетах

Сила тяжести на поверхности[39] некоторых небесных тел, за 1 принята сила тяжести на Земле[40]
Земля 1,00 Солнце 27,85
Луна 0,165 Меркурий 0,375—0,381
Венера 0,906 Марс 0,394
Юпитер 2,442 Сатурн 1,065
Уран 0,903 Нептун 1,131

Литература

  • Ньютон И. Математические начала натуральной философии. — М.: Наука, 1989. — 688 с. — ISBN 5-02-000747-1.
  • Савельев И. В. Курс общей физики. Т. 1. Механика. Молекулярная физика. — М.: Наука, 1987. — 688 с.
  • Криволуцкий А. Е. Голубая планета. Земля среди планет. Географический аспект.. — М.: Мысль, 1985. — 335 с.
  • Миронов В. С. Курс гравиразведки. — Л.: Недра, 1980. — 543 с.
  • Тарасов В. Н., Бояркина И. В., Коваленко М. В., Федорченко Н. П., Фисенко Н. И. Теоретическая механика. — М.: ТрансЛит, 2012. — 560 с.
  • Бутенин Н. В. Введение в аналитическую механику. — М.: Наука, 1971. — 264 с. — 25 000 экз.

Эта страница в последний раз была отредактирована 21 марта 2019 в 20:44.

Загрузка ...
Adblock detector