Что такое ОВР химия ОВР примеры и решение

Окислитель

Что ответить человеку, которого интересует, как решать окислительно-восстановительные реакции? Они нерешаемы. Впрочем, как и любые другие. Химики вообще не решают ни реакции, ни их уравнения. Для окислительно-восстановительной реакции (ОВР) можно составить уравнение и расставить в нём коэффициенты. Рассмотрим, как это сделать.

Окислительно-восстановительной называют такую реакцию, в ходе которой изменяются степени окисления реагирующих веществ. Это происходит потому, что одна из частиц отдаёт свои электроны (её называют восстановителем),  а другая – принимает их (окислитель).

Восстановитель, теряя электроны, окисляется, то есть повышает значение степени окисления. Например, запись: означает, что цинк отдал 2 электрона, то есть окислился. Он восстановитель. Степень окисления его, как видно из приведённого примера, повысилась.  – здесь сера принимает электроны, то есть восстанавливается. Она окислитель. Степень окисления ее понизилась.

У кого-то может возникнуть вопрос, почему при добавлении электронов степень окисления понижается, а при их потере, напротив, повышается? Всё логично. Элеrтрон – частица с зарядом -1, поэтому с математической точки зрения запись  следует читать так: 0 – (-1) = 1, где (-1) – и есть электрон. Тогда означает: 0 (-2) = -2, где (-2) – это и есть те два электрона, которые принял атом серы.

На самом же деле, окислитель должен присоединить к себе ровно столько электронов, сколько их отдал восстановитель. В природе соблюдается баланс во всем, в том числе и в окислительно-восстановительных процессах.

Общее кратное между количеством отданных и принятых электронов равно 2. Разделив его на число электронов, которые отдает натрий (2:1=1) и сера (2:2=1) получим коэффициенты в данном уравнении.

То есть в правой и в левой частях уравнения атомов серы должно быть по одному (величина, которая получилась в результате деления общего кратного на число принятых серой электронов),  а атомов натрия – по два. В записанной схеме же слева пока только один атом натрия.

Мы составили уравнение простейшей окислительно-восстановительной реакции и расставили в нем коэффициенты методом электронного баланса.

Перед формулой серной кислоты коэффициенты из баланса пока не ставим. Считаем другие металлы, если они есть, затем – кислотные остатки, потом Н, и в самую последнюю очередь проверку делаем по кислороду.

В данном уравнении атомов натрия справа и слева должно быть по 8. Остатки серной кислоты используются два раза. Из них 4 становятся солеобразователями (входят в состав Na2SO4)и один превращается в H2S,то есть всего должно быть израсходовано 5 атомов серы. Ставим 5 перед формулой серной кислоты.

Проверяем H: атомов H в левой части 5×2=10,  в правой – только 4, значит перед водой ставим коэффициент 4 (перед сероводородом его ставить нельзя, так как из баланса следует, что молекул H2S должно быть по 1 справа и слева. Проверку делаем по кислороду. Слева 20 атомов О, справа их 4×4 из серной кислоты и еще 4 из воды.  Все сходится, значит действия выполнены правильно.

Это один вид действий, которые мог иметь в виду тот, кто спрашивал, как решать окислительно-восстановительные реакции.

В некоторых случаях нужно знать, каковы продукты окисления/восстановления , как на них влияет кислотность среды и различные факторы, о которых пойдет речь в других статьях.

реакция, решение, химия

Прежде чем приводить примеры окислительно-восстановительных реакций с решением, выделим основные определения, связанные с данными превращениями.

Те атомы или ионы, которые в ходе взаимодействия меняют степень окисления с понижением (принимают электроны), называют окислителями. Среди веществ, обладающих такими свойствами, можно отметить сильные неорганические кислоты: серную, соляную, азотную.

Предлагаем ознакомиться:  Сифилис на губах - причины, симптомы, лечение

Окислитель

Также к сильным окислителям относятся перманганаты и хроматы щелочных металлов.

Окислитель принимает то количество электронов в ходе реакции, которое необходимо ему до завершения энергетического уровня (установления завершенной конфигурации).

Восстановитель

Любая схема окислительно-восстановительной реакции предполагает выявление восстановителя. К нему относят ионы или нейтральные атомы, способные повышать в ходе взаимодействия показатель степени окисления (отдают электроны иным атомам).

В качестве типичных восстановителей можно привести атомы металлов.

Процессы в ОВР

Чем еще характеризуются ОВР? Окислительно-восстановительные реакции характеризуются изменением степеней окисления у исходных веществ.

Окисление предполагает процесс отдачи отрицательных частиц. Восстановление предполагает принятие их от других атомов (ионов).

Примеры окислительно-восстановительных реакций с решением предлагаются в различных справочных материалах, предназначенных для подготовки старшеклассников к выпускным испытаниям по химии.

  1. В первую очередь проставляют зарядовые величины у всех элементов в веществах, предложенных в схеме.
  2. Выписываются атомы (ионы) из левой части реакции, которые в ходе взаимодействия, поменяли показатели.
  3. При повышении степени окисления используется знак «-», а при понижении « ».
  4. Между отданными и принятыми электронами определяется наименьшее общее кратное (число, на которое они делятся без остатка).
  5. При делении НОК на электроны, получаем стереохимические коэффициенты.
  6. Расставляем их перед формулами в уравнение.

В девятом классе далеко не все школьники знают, как решать окислительно-восстановительные реакции. Именно поэтому они допускают множество ошибок, не получают высоких баллов за ОГЭ. Алгоритм действий приведен выше, теперь попробуем отработать его на конкретных примерах.

Особенность заданий, касающихся расстановки коэффициентов в предложенной реакции, выданных выпускникам основной ступени обучения, в том, что и левая, и правая части уравнения даны.

Это существенно упрощает задачу, так как не нужно самостоятельно придумывать продукты взаимодействия, подбирать недостающие исходные вещества.

CuO Fe=FeO Cu

На первый взгляд, в данной реакции не требуются стереохимические коэффициенты. Но, для того, чтобы подтвердить свою точку зрения, необходимо у всех элементов зарядовые числа.

Составим электронный баланс, показав знаком « » и «-» количество принятых и отданных в ходе взаимодействия электронов.

Cu2 2e=Cu0;

Fe0-2e=Fe2 .

Так как количество принятых и отданных в ходе взаимодействия электронов одинаково, нет смысла находить наименьшее общее кратное, определять стереохимические коэффициенты, ставить их в предложенную схему взаимодействия.

Для того чтобы получить за задание максимальный балл, необходимо не только записать примеры окислительно-восстановительных реакций с решением, но и выписать отдельно формулу окислителя (CuO) и восстановителя (Fe).

Второй пример с ОГЭ

Приведем еще примеры окислительно-восстановительных реакций с решением, которые могут встретиться девятиклассникам, выбравшим химию в качестве выпускного экзамена.

Na HCl=NaCl H2.

Для того чтобы справиться с поставленной задачей, сначала важно определить у каждого простого и сложного вещества показатели степеней окисления. У натрия и водорода они будут равны нулю, так как они являются простыми веществами.

В соляной кислоте водород имеют положительную, а хлор — отрицательную степень окисления. После расстановки коэффициентов получим реакцию с коэффициентами.

Как дополнить окислительно-восстановительные реакции? Примеры с решением, встречающиеся на ЕГЭ (11 класс), предполагают дополнение пропусков, а также расстановку коэффициентов.

H2S HMnO4= S MnO2 …

Определите восстановитель и окислитель в предложенной схеме.

Как научиться составлять окислительно-восстановительные реакции? Образец предполагает использование определенного алгоритма.

Сначала во всех веществах, данных по условию задачи, необходимо поставить степени окисления.

Mn 7 принимает 3 e= Mn 4;

S-2 отдает 2e= S0.

Предлагаем ознакомиться:  Что такое спам в электронной почте и чем он грозит

Катион марганца является восстановителем, а анион серы – типичный окислитель. Поскольку наименьшим кратным между принятыми и отданными электронами будет 6, получаем коэффициенты: 2, 3.

Классификация ОВР: примеры

Различают следующие типы окислительно-восстановительных реакций:

  • межмолекулярное окисление-восстановление (окислитель и восстановитель находятся в составе разных молекул);
  • внутримолекулярное окисление-восстановление (окислитель находится в составе той же молекулы, что и восстановитель);
  • диспропорционирование (окислителем и восстановителем является атом одного и того же элемента);
  • репропорционирование (окислитель и восстановитель образуют в результате реакции один продукт).

Примеры химических превращений, относящихся к различным типам ОВР:

  • Внутримолекулярные ОВР — это чаще всего реакции термического разложения вещества:

2KCLO3 = 2KCl 3O2

(NH4)2Cr2O7 = N2 Cr2O3 4H2O

2NaNO3 = 2NaNO2 O2

3Cu 8HNO3 = 3Cu(NO3)2 2NO 4H2O

2Al Fe2O3 = Al2O3 2Fe

N2 3H2 = 2NH3

  • Реакции диспропорционирования:

3Br2 6KOH = 5KBr KBrO3 6H2O

3HNO2 = HNO3 2NO H2O

2NO2 H2O = HNO3 HNO2

4KClO3 = KCl 3KClO4

  • Реакции репропорционирования:

2H2S SO2 = 3S 2H2O

HOCl HCl = H2O Cl2

Окислительно-восстановительные реакции также разделяют на токовые и бестоковые.

Первый случай — это получение электрической энергии за счёт химической реакции (такие источники энергии могут использоваться в двигателях машин, в радиотехнических устройствах, приборах управления), либо электролиз, то есть химическая реакция, наоборот, возникает за счёт электроэнергии (с помощью электролиза можно получать различные вещества, обрабатывать поверхности металлов и изделий из них).

Примерами бестоковых ОВР можно назвать процессы горения, коррозии металлов, дыхания и фотосинтеза и т.д.

Метод электронного баланса ОВР в химии

Уравнения большинства химических реакций уравниваются несложным подбором стехиометрических коэффициентов. Однако при подборе коэффициентов для ОВР можно столкнуться с ситуацией, когда количество атомов одних элементов не удаётся уравнять, не нарушая при этом равенство количеств атомов других. В уравнениях таких реакций подбирают коэффициенты методом составления электронного баланса.

Основывается метод на том, что сумма принимаемых окислителем электронов и количество отдаваемых восстановителем приводится к равновесию.

Метод складывается из нескольких этапов:

  1. Записывается уравнение реакции.
  2. Определяются СО элементов.
  3. Определяются элементы, которые в результате реакции изменили свои степени окисления. Отдельно записываются полуреакции окисления и восстановления.
  4. Подбираются множители для уравнений полуреакций так, чтобы уравнять принятые в полуреакции восстановления и отданные в полуреакции окисления электроны.
  5. Подобранные коэффициенты проставляются в уравнение реакции.
  6. Подбираются остальные коэффициенты реакции.

На простом примере взаимодействия алюминия с кислородом удобно написать уравнивание поэтапно:

  • Уравнение: Al O2 = Al2О3
  • СО у атомов в простых веществах алюминия и кислорода равны 0.

Al0 O20 = Al 32O-23

Al0 -3е = Al 3;

O20 4e = 2O-2

  • Подбираем коэффициенты, при умножении на которые сравняется количество принятых и количество отданных электронов будет одинаковым:

Al0 -3е = Al 3 коэффициент 4;

O20 4e = 2O-2 коэффициент 3.

  • Проставляем коэффициенты в схему реакции:

4Al 3O2 = Al2O3

  • Видно, что для уравнивания всей реакции достаточно поставить коэффициент перед продуктом реакции:

4Al 3O2 = 2Al2O3

Могут встречаться следующие задания на уравнивания ОВР:

  • Взаимодействие перманганата калия с хлоридом калия в кислой среде с выделением газообразного хлора.

KCl KMnO4 H2SO4 = Cl2 MnSO4 K2SO4 H2O

K 1Cl-1 K 1Mn 7O4-2 H2 1S 6O4-2 = Cl20 Mn 2S 6O4-2 K2 1S 6O4-2 H2 1O-2

Mn 7 5е = Mn 2 множитель два;

2Cl-1 -2е = Cl20 множитель пять.

10K 1Cl-1 2K 1Mn 7O4-2 H2SO4 = 5Cl20 2Mn 2S 6O4-2 K2SO4 H2O

10KCl 2KMnO4 8H2SO4 = 5Cl2 2MnSO4 6K2SO4 8H2O

  • Взаимодействие меди (Cu) с концентрированной азотной кислотой(HNO3) с выделением газообразного оксида азота (NO2):

Cu HNO3(конц.) = NO2 ­ Cu(NO3)2 2H2O

Cu0 H 1N 5O3-2 = N 4O2 ­ Cu 2(N 5O3-2)2 H2 1O-2

Предлагаем ознакомиться:  Отек мозга - симптомы болезни, профилактика и лечение Отека мозга, причины заболевания и его диагностика на EUROLAB

Как видно, атомы меди повышают свою СО с нуля до двух, а атомы азота — снижают с 5 до 4

Cu0 -2е = Cu 2 множитель один;

N 5 1е = N 4 множитель два.

Cu0 4H 1N 5O3-2 = 2N 4O2 ­ Cu 2(N 5O3-2)2 H2 1O-2

Cu 4HNO3(конц.) = 2NO2 ­ Cu (NO3)2 2H2O

  • Взаимодействие дихромата калия с Н2S в кислой среде:

К2 1Сr2 6О7-2 Н2 1S-2 Н2 1S 6O4-2 = S0 Сr2 3(S 6O4-2)3 K2 1S 6O4-2 H2O

S-2 –2e = S0 коэффициент 3;

2Cr 6 6e = 2Cr 3 коэффициент 1.

К2Сr2О7 3Н2S Н2SО4 = 3S Сr2(SО4)3 K2SO4 Н2О

К2Сr2О7 3Н2S 4Н2SО4 = 3S Сr2(SО4)3 K2SO4 7Н2О

Влияние реакционной среды

Характер среды влияет на протекание тех или иных ОВР. Роль реакционной среды можно проследить на примере взаимодействия перманганата калия (KMnO4) и сульфита натрия (Na2SO3) при различных значениях рН:

  1. Na2SO3 KMnO4 = Na2SO4 MnSO4 K2SO4 (pH <7 кислая среда);
  2. Na2SO3 KMnO4 = Na2SO4 MnO2 KOH (pH =7 нейтральная среда);
  3. Na2SO3 KMnO4 = Na2SO4 K2MnO4 H2O (pH >7 щелочная среда).

в кислой среде продуктом будет Cr3 ;

в щелочной — CrO2—, CrO33 ;

в нейтральной — Cr2O3.

Второй пример с ОГЭ

Na HCl=NaCl H2.

В соляной кислоте водород имеют положительную, а хлор — отрицательную степень окисления. После расстановки коэффициентов получим реакцию с коэффициентами.

S-2 отдает 2e= S0.

3H2S 2HMnO4= 3S 2MnO2 4H2O.

Как правильно составить окислительно-восстановительные реакции? Примеры с решением помогут отработать алгоритм действий.

PH3 HMnO4 = MnO2 … …

Расставляем у всех элементов степени окисления. В данном процессе окислительные свойства проявляются марганцем, входящим в состав марганцовой кислоты, а восстановителем должен быть фосфор, меняя свою степень окисления на положительную в фосфорной кислоте.

Согласно сделанному предположению, получаем схему реакции, затем составляем уравнение электронного баланса.

P-3 отдает 8 e и превращается в P 5;

Mn 7 принимает 3e, переходя в Mn 4.

НОК будет 24, поэтому у фосфора должен присутствовать стереометрический коэффициент 3, а у марганца -8.

3 PH3 8 HMnO4= 8 MnO2 4H2O 3 H3PO4.

Третий пример из ЕГЭ

Путем электронно-ионного баланса нужно составить реакцию, указать восстановитель и окислитель.

KMnO4 MnSO4 …= MnO2 … H2SO4.

По алгоритму расставляем у каждого элемента степени окисления. Далее определяем те вещества, что пропущены в правой и левой частях процесса. Здесь дан восстановитель и окислитель, поэтому в пропущенных соединениях степени окисления не меняются. Упущенным продуктом станет вода, а исходным соединением – сульфат калия. Получаем схему реакции, для которой составим электронный баланс.

Mn 2-2 e= Mn 4 3 восстановитель;

Mn 7 3e= Mn 4 2 окислитель.

Записываем коэффициенты в уравнение, суммируя атомы марганца в правой части процесса, так как он относится к процессу диспропорционирования.

2KMnO4 3MnSO4 2H2O= 5MnO2 K 2SO4 2H2SO4.

Заключение

Окислительно-восстановительные реакции имеют особое значение для функционирования живых организмов. Примерами ОВР являются процессы гниения, брожения, нервной деятельности, дыхания, обмена веществ.

Окисление и восстановление актуальны для металлургической и химической промышленности, благодаря таким процессам можно восстанавливать металлы из их соединений, защищать от химической коррозии, подвергать обработке.

Для составления окислительно-восстановительного процесса в органической или неорганической химии необходимо использовать определенный алгоритм действий. Сначала в предложенной схеме расставляют степени окисления, потом определяют те элементы, которые повысили (понизили) показатель, записывают электронный баланс.

Далее между принятыми и отданными электронами необходимо определить наименьшее кратное, вычислить математическим путем коэффициенты.

При соблюдении последовательности действий, предложенной выше, можно без проблем справиться с заданиями, предлагаемыми в тестах.

Помимо метода электронного баланса, расстановка коэффициентов возможна также путем составления полуреакций.

Загрузка ...
Adblock detector