Плоский конденсатор. Заряд и емкость конденсатора.

Плоский конденсатор.

Такое устройство называется плоским конденсатором, а пластины – обкладками конденсатора. Стоит уточнить, что здесь мы рассматриваем уже заряженный конденсатор (сам процесс зарядки мы изучим чуть позже), то есть на обкладках сосредоточен определенный заряд. Причем наибольший интерес представляет тот случай, когда заряды пластин конденсатора одинаковы по модулю и противоположны по знаку (как на рисунке).

А поскольку на обкладках сосредоточен заряд, между ними возникает электрическое поле, изображенное стрелками на нашей схеме. Поле плоского конденсатора, в основном, сосредоточено между пластинами, однако, в окружающем пространстве также возникает электрическое поле, которое называют полем рассеяния.

Каждая из обкладок конденсатора в отдельности создает электрическое поле:

  • положительно заряженная пластина ( q) создает поле, напряженность которого равна E_{ }
  • отрицательно заряженная пластина (-q) создает поле, напряженность которого равна E_

А какая же будет величина напряженности вне конденсатора? А все просто – слева и справа от обкладок поля пластин компенсируют друг друга и результирующая напряженность равна 0 🙂

Существует множество типов конденсаторов различной формы и внутреннего устройства. Рассмотрим самый простой и принципиальный — плоский конденсатор.
Плоский конденсатор состоит из двух параллельных пластин проводника (обкладок),
электрически изолированных друг от друга воздухом, или специальным диэлектрическим материалом (например бумага, стекло или слюда).

Определение

Слово конденсатор происходит от латинского «condensatio», что переводится как «накопление». В физике этот термин употребляется для описания целой ниши электротехнических изделий, назначение которых работать как накопитель энергии. Количество накопленной энергии зависит от ёмкости и квадрата напряжения на его обкладках, поделенное на 2. При этом ток через него протекает только в процессе заряда. Но обо всем по порядку.

E=(CU2)/2

Если сказать по-простому, то конденсатор – это устройство способное накапливать энергию в электрическом поле. В простейшем варианте состоит из двух проводников (обкладок), разделённых диэлектриком. На рисунке ниже вы видите упрощенную схему внешнего устройства плоского конденсатора. Условное обозначение на схеме представляет собой 2 черты высотой в 8 мм, на расстоянии в 1,5 мм друг от друга.

Номинальное напряжение

где q – величина заряда одной из обкладок конденсатора, а – разность потенциалов между его обкладками.

Электроемкость конденсатора — это величина, которая зависит то размеров и устройства конденсатора.

где – электрическая постоянная; – площадь каждой (или наименьшей) пластины; – расстояние между пластинами; – диэлектрическая проницаемость диэлектрика, который находится между пластинами конденсатора.

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

где – радиусы обкладок конденсатора.

Рассмотрим последовательное соединение из N конденсаторов ( рис. 1).

Здесь (рис.1) положительная обкладка одного конденсатора соединяется с отрицательной обкладкой следующего конденсатора. При таком соединении, обкладки соседних конденсаторов создают единый проводник. У всех конденсаторов, соединенных последовательно на обкладках имеются равные по величине заряды.

При параллельном соединении конденсаторов (рис.2), соединяют обкладки, имеющие заряды одного знака. Суммарный заряд соединения (q) равен сумме зарядов конденсаторов.

Итак, мы подключили обкладки конденсатора к полюсам источника постоянного тока. Что же будет происходить?

Свободные электроны с первой обкладки конденсатора устремятся к положительному полюсу источника, в связи с чем на обкладке возникнет недостаток отрицательно заряженных частиц и она станет положительно заряженной. В то же время электроны с отрицательного полюса источника тока переместятся ко второй обкладке конденсатора, в результате чего на ней возникнет избыток электронов, соответственно, обкладка станет отрицательно заряженной.

Таким образом, на обкладках конденсатора образуются заряды разного знака (как раз этот случай мы и рассматривали в первой части статьи), что приводит к появлению электрического поля, которое создаст между пластинами конденсатора определенную разность потенциалов. Процесс зарядки будет продолжаться до тех пор, пока эта разность потенциалов не станет равна напряжению источника тока, после этого процесс зарядки закончится, и перемещение электронов по цепи прекратится.

В данном случае по цепи начнет протекать ток разряда конденсатора, а электроны начнут перемещаться с отрицательно заряженной обкладки к положительной. В результате напряжение на конденсаторе (разность потенциалов между обкладками) начнет уменьшаться. Этот процесс завершится в тот момент, когда заряды пластин конденсаторов станут равны друг другу, соответственно электрическое поле между обкладками пропадет и по цепи перестанет протекать ток. Вот так и происходит разряд конденсатора, в результате которого он отдает во внешнюю цепь всю накопленную энергию.

Как видите, здесь нет ничего сложного 🙂

По своему предназначению конденсатор напоминает батарейку, однако все же он сильно отличается по принципу работы,
максимальной емкости, а также скорости зарядки/разрядки.

Рассмотрим принцип работы плоского конденсатора. Если подключить к нему источник питания,
на одной пластине проводника начнут собираться отрицательно заряженные частицы в виде электронов,
на другой – положительно заряженные частицы в виде ионов. Поскольку между обкладками находиться диэлектрик,
заряженные частицы не могут «перескочить» на противоположную сторону конденсатора.
Тем не менее, электроны передвигаются от источника питания — до пластины конденсатора. Поэтому в цепи идет электрический ток.

В самом начале включения конденсатора в цепь, на его обкладках больше всего свободного места.
Следовательно, начальный ток в этот момент встречает меньше всего сопротивления и является максимальным.
По мере заполнения конденсатора заряженными частицами ток постепенно падает, пока не закончится свободное
место на обкладках и ток совсем не прекратится.

Предлагаем ознакомиться:  Как проверить конденсатор не выпаивая

Время между состояниями «пустого» конденсатора с максимальным значением тока, и «полного»
конденсатора с минимальным значением тока (т.е. его отсутствием),
называют переходным периодом заряда конденсатора.

В самом начале переходного периода зарядки, напряжение между обкладками конденсатора равняется нулю.
Как только на обкладках начинают появляться заряженные частицы, между разноименными зарядами возникает напряжение.
Причиной этому является диэлектрик между пластинами, который «мешает» стремящимся друг к другу зарядам с противоположным
знаком перейти на другую сторону конденсатора.

На начальном этапе зарядки, напряжение быстро растет,
потому что большой ток очень быстро увеличивает количество заряженных частиц на обкладках.
Чем больше заряжается конденсатор, тем меньше ток, и тeм медленнее растет напряжение.
В конце переходного периода, напряжение на конденсаторе полностью прекратит рост, и будет равняться напряжению на источнике питания.

Как видно на графике, сила тока конденсатора напрямую зависит от изменения напряжения.

Формула для нахождения тока конденсатора во время переходного периода:

  • ΔVc/Δt – Изменение напряжения на конденсаторе за отрезок времени

Второй по значимости характеристикой после емкости является максимальное номинальное напряжение конденсатора.
Данный параметр обозначает максимальное напряжение, которое может выдержать конденсатор.
Превышение этого значения приводит к «пробиванию» изолятора между пластинами и короткому замыканию. Номинальное напряжение зависит от материала изолятора и его толщины (расстояния между обкладками).

Следует отметить, что при работе с переменным напряжением нужно учитывать именно пиковое значение
(наибольшее мгновенное значение напряжения за период). Например, если эффективное напряжение
источника питания будет 50В, то его пиковое значение будет свыше 70В. Соответственно необходимо
использовать конденсатор с номинальным напряжением более 70В.

Принцип функционирования

Основная причина, по которой описываемый элемент включается в электрическую схему, состоит в том, чтобы копить заряд в периоды повышенного напряжения и обеспечивать питание цепи в периоды низкого.

Принцип работы конденсатора заключается в следующем. Когда электрический прибор подключен к сети питания, конденсатор заряжается. На одной его пластине накапливаются электроны (частицы с отрицательным зарядом), а на другой – ионы, которые заряжены положительно. Соприкосновению их мешает диэлектрик. Такое устройство конденсатора позволяет накопить заряд.

После того, как прибор отключается от розетки или батареи, происходит разряд конденсатора. Нагрузка в электрической цепи сохраняется, для этого прибору нужны напряжение и ток, который передает устройство. Необходимость питания прибора заставляет электроны в конденсаторе двигаться к ионам, образуется ток, который передается к другим элементам.

Устройство конденсатора

Устройство конденсатора

Теперь, когда мы знаем, как обозначается данный элемент на схемах, нужно рассмотреть принцип работы конденсатора. Когда обкладки конденсатора подключают к источнику питания, электрические заряды от положительного и отрицательного зажима ИП устремляются к обкладкам, скапливаясь на них.

Электрический ток прерывается после заряда конденсатора до номинальной ёмкости, так как между обкладками находится слой диэлектрика он не может протекать постоянно. Когда источник питания отключат, на конденсаторе останутся заряды, а значит и останется напряжение на его выводах.

Заряды, скопившиеся на каждой из обкладок, противоположны. Соответственно та обкладка, что была подключена к плюсовому выводу источника питания – заряжена положительно, а та, что к минусовому – отрицательно. Принцип работы этого изделия основан на притяжении разноименных зарядов в электрической цепи.

Простыми словами конденсатор сохранит ту энергию, которая была передана от источника питания – в этом и кроется его назначение. Однако на практике есть разнообразные потери и утечки.

Интересно! Лейденская банка – это прообраз современных конденсаторов, родившийся на свет в 1745 году. Это устройство было способно накапливать энергию и извлекать искры при замыкании его обкладок. Внешний вид и конструкцию вы видите ниже.

Так как ёмкость прямо пропорциональна площади обкладок и обратно пропорциональна расстоянию между ними – то чтобы увеличить ёмкость, инженеры разработали ряд других форм конденсаторов. Например, свёрнутые в спираль обкладки – так их площадь становилась во много раз больше при тех же габаритных размерах, а также цилиндрические и сферические решения.

Один из законов коммутации гласит, что напряжение на обкладках конденсатора не может изменится скачком, что и иллюстрирует следующая миниатюра.

Основные технические характеристики

Если вы ремонтируете или разрабатываете электронное устройство, вам понадобится подбирать подходящий конденсатор для замены вышедшего из строя. А для этого нужно ознакомиться с основными техническими характеристиками конденсатора, от которых зависит его работа в электрической цепи.

Номинальная емкость. Характеризует основное назначение компонента — какой заряд он может запасать. Основная характеристика измеряется в фарадах [Ф]. Однако такая единица измерения слишком большая, поэтому используют доли:

  • Милифарады, мФ – 0, 001 Ф (10-3);
  • Микрофарады, мкФ – 0, 000 001 Ф (10-6);
  • Нанофарады, нФ – 0, 000 000 001 Ф (10-9);
  • Пикофарады, пФ – 0, 000 000 000 001 Ф (10-12).

Номинальное напряжение — это такое напряжение, до которого конденсатор может гарантировано работать в нормальном режиме. При превышении этого значения с большой долей вероятности происходит пробой диэлектрика. Может быть от единиц вольт (для электролитов) и до тысяч вольт (плёнка и керамика). При ремонте эта величина должна быть не ниже, чем у вышедшего из строя, выше – можно!

Предлагаем ознакомиться:  Для чего нужен конденсатор в электронике

Допуск отклонения — насколько реальная ёмкость может отличаться от заявленной номинальной. Может достигать 20-30%, но есть и высокоточные модели с допуском до 1% — для применения в цепях, где требуется особая точность.

Температурный коэффициент емкости — этот параметр важен для электролитов. У алюминиевых конденсаторов при понижении температуры понижается ёмкость и увеличивается удельное электрическое сопротивление (в англ. ESR)

ESR – эквивалентное последовательное сопротивление, также важен для электролитов. Простым языком – чем он больше, тем хуже. У вздувшихся кондёров ESR повышается.

В таблице ниже вы видите допустимые значения ESR для различных номинальных емкостей и напряжений.

Разряд конденсатора

После того как конденсатор зарядился, отключим источник питания и подключим нагрузку R.
Так как конденсатор уже заряжен, он сам превратился в источник питания.
Нагрузка R образовала проход между пластинами. Отрицательно заряженные электроны,
накопленные на одной пластине, согласно силе притяжения между разноименными зарядами,
двинутся в сторону положительно заряженных ионов на другой пластине.

В момент подключения R, напряжение на конденсаторе то же, что и после окончания переходного периода зарядки.
Начальный ток по закону Ома будет равняться напряжению на обкладках, разделенном на сопротивление нагрузки.

Как только в цепи пойдет ток, конденсатор начнет разряжаться. По мере потери заряда,
напряжение начнет падать. Следовательно, ток тоже упадет. По мере понижения значений
напряжения и тока, будет снижаться их скорость падения.

Время зарядки и разрядки конденсатора зависит от двух параметров – емкости конденсатора C и общего сопротивления в цепи R.
Чем больше емкость конденсатора, тем большее количество заряда должно пройти по цепи, и тем больше
времени потребует процесс зарядки/разрядки ( ток определяется как количество заряда, прошедшего
по проводнику за единицу времени). Чем больше сопротивление R, тем меньше ток. Соответственно, больше времени потребуется на зарядку.

Продукт RC (сопротивление, умноженное на емкость) формирует временную константу τ (тау).
За один τ конденсатор заряжается или разряжается на 63%. За пять τ
конденсатор заряжается или разряжается полностью.

Где и для чего применяются

Всё же ответим на вопрос «для чего предназначен конденсатор?» с практической точки зрения. Для этого рассмотрим несколько схем.

Самое широкое применение электролитические конденсаторы нашли в качестве уже не раз упомянутого фильтра сетевых пульсаций в блоках питания. На схеме ниже изображено, где именно устанавливается электролит. Чем больше нагрузка – тем большая ёмкость электролита нужна для сглаживания пульсаций.

Следующее место, где применяются конденсаторы – это фильтры высоких и низких частот. Ниже на схеме приведены типовые включения. Таким образом в акустических системах разводят басы, средние и высокие частоты по динамикам без применения активных компонентов.

Балластные блоки питания часто используются для зарядки небольших аккумуляторов и питания маломощных устройств, таких как дешевые светодиодные лампочки, радиоприёмники и прочие. Плёночный конденсатор устанавливается последовательно с питающим устройством, ограничивая ток за счёт своего реактивного сопротивления – в этом и заключается принцип работы такой простой схемы.

Снабберы – это устройства, предназначенные для защиты полупроводниковых ключей и контактов реле от нагрузок, возникающих при коммутации. В современных импульсных высокочастотных БП нашли применение снабберы из резистора и конденсатора, таким образом улучшаются основные параметры в цепи и снижаются нагрузки на ключи, как и потери мощности на его нагрев. Принцип действия снаббера состоит в замедлении фронтов роста и спада напряжения на ключе за счет использования постоянной времени заряда ёмкости.

Устройство конденсатора. От чего зависит емкость?

Наиболее распространенные конденсаторы —  это плоские и цилиндрические. Плоские состоят из пластин, удаленных друг от друга на небольшое расстояние. Цилиндрические, собираются при помощи цилиндров равной длины и разного диаметра. Все конденсаторы, в принципе, устроены одинаково. Разница, в основном, в том, какой материал используется в качестве диэлектрика. По типу диэлектрической среды и классифицируют конденсаторы, которые бывают жидкими, вакуумными, твердыми, воздушными.

Емкость плоского конденсатора зависит от трех основных факторов:

  • Расстояние между пластинами – d
  • Относительная диэлектрическая проницаемость вещества между пластинами — ɛ

Емкость изменяется в Фарадах, но величина 1 Ф является довольно большой, поэтому чаще всего емкость конденсаторов измерятся в микрофарадах (мкФ), нанофарадах (нФ) и пикофарадах (пФ).

Если в качестве диэлектрика у нас выступает воздух, то во всех формулах можно подставить

Помимо емкости конденсаторы характеризуются еще одним параметром, а именно величиной напряжения, которое может выдержать его диэлектрик. При слишком больших значениях напряжения электроны диэлектрика отрываются от атомов, и диэлектрик начинает проводить ток. Это явление называется пробоем конденсатора, и в результате обкладки оказываются замкнутыми друг с другом.

В общем, мы рассмотрели сегодня основные свойства конденсаторов, их устройство и характеристики, так что на этом заканчиваем статью, а в следующей мы будем обсуждать различные варианты соединений конденсаторов, так что заходите на наш сайт снова!

Прежде, чем ответить на вопрос, для чего нужен конденсатор, следует разобраться, какие они бывают. Конденсаторы разделяются по следующим признакам:

  • Предназначение и выполняемые функции;
  • Рабочие условия;
  • Тип вещества, разделяющего обкладки.
Предлагаем ознакомиться:  Постоянно холодные ноги: причины. Почему холодные ноги у ребенка или у взрослого?

Конденсаторы активно используются в цепях, где необходима их способность копить и хранить электрический заряд (требуется наличие емкостного устройства). Для этого внутри него установлены две обкладки с разными знаками заряда. Между ними расположено вещество, препятствующее их соприкосновению и разрядке. В большинстве случаев в качестве диэлектрика используется тантал или алюминий, но могут применяться и керамические материалы, слюда или полистирол.

Основным достоинством алюминиевых устройств является их более низкая, по сравнению с танталовыми, стоимость, а также более широкая сфера применения. Вместе с тем, танталовые аналоги более эффективны в использовании и обладают более высокими техническими характеристиками, поэтому при выборе следует учитывать не только фактор цены.

Виды конденсаторов

Виды конденсаторов

Дополнительная информация. Конденсаторы из тантала отличаются повышенной надежностью, у них широкий рабочий диапазон температур, что позволяет эксплуатировать их практически в любых условиях. Наиболее широкое применение они нашли в электронике и сопутствующих отраслях промышленности, поскольку обладают большой емкостью и компактными габаритами. К недостаткам устройств данного типа специалисты относят их более высокую цену и чувствительность к колебаниям тока и напряжения.

Силовые элементы применяются чаще всего в цепях с высоким напряжением. Специальная конструкция позволяет обеспечивать большую емкость, а значит, они могут использоваться для стабилизации обеспечения электричеством по линиям электропередач (компенсируют потери энергии). Кроме того, они активно используются для повышения мощности промышленных электроустановок. Диэлектрик в таком устройстве – это пропитанная изоляционным маслом металлизированная пропиленовая пленка.

Самыми широко используемыми являются керамические. Их емкость может варьироваться в значительных пределах – от 1 пикофарада до 0,1 микрофарада. Для предотвращения саморазряда применяется керамика, а в качестве преимущества специалисты отмечают доступную цену, широкие функциональные возможности, высокий уровень надежности и низкий –потерь.

Несмотря на свою дороговизну, на практике применяются серебряно-слюдяные конденсаторы. Они работают крайне стабильно, поддерживают высокую емкость, их корпус полностью герметичен. Но широкому распространению мешает высокая цена.

Применяются и бумажные или металлобумажные элементы. Их обкладка изготовлена из алюминиевой фольги, а в качестве диэлектрика используется бумага, пропитанная специальным составом.

Типы конденсаторов

Типы конденсаторов

Конденсаторы служат решению самых разнообразных задач. В частности, они активно используются при хранении аналоговых и цифровых данных, часто устанавливаются в телемеханических устройствах для регулирования сигналов в соответствующем оборудовании, что сохраняет его от различных повреждений и проблем.

Широко распространено применение конденсаторов в источниках бесперебойного питания, что позволяет сглаживать напряжение при подключении к приборам различного оборудования (компьютеры, оргтехника и так далее).

Обратите внимание! По такому же принципу устроен источник бесперебойного питания. Во время подключения к электрической цепи он накапливает заряд, который потом можно использовать в течение короткого времени, что делает возможным выключение техники без каких-либо сбоев, а это особенно актуально в современных условиях, когда информация имеет крайне большое значение.

Описываемые элементы нашли свое применение в различных преобразователях напряжения. В частности, их можно использовать для увеличения напряжения в сети, величина которого будет превышать входное значение.

Важно! Эксплуатация конденсатора в качестве временного источника питания имеет некоторые ограничения. Это объясняется наличием у диэлектрика хоть небольшой, но проводимости. Поэтому устройство со временем постепенно разряжается, следовательно, при необходимости иметь стабильный источник тока лучше воспользоваться аккумуляторной батареей.

Применение конденсаторов

Применение конденсаторов

Наличие возможности накопить заряд, а потом быстро его направить в сеть позволяет сделать устройство незаменимым элементом при изготовлении лазеров, вспышек для фотоаппаратов и других подобных приборов.

Таким образом, без использования описываемого устройства практически невозможно представить современную электронную и электротехническую промышленность. Благодаря пониманию того, как работает конденсатор, его активно применяют при производстве различных устройств, как промышленного, так и бытового назначения. Он помогает обеспечить безопасность электрической цепи и увеличивает срок службы различных приборов.

Площадь пластин

Чем больше площадь пластин конденсатора, тем больше заряженых частиц могут на них разместится, и тем больше емкость.

Емкость конденсатора обратно пропорциональна расстоянию между пластинами. Для того чтобы объяснить природу влияния этого фактора,
необходимо вспомнить механику взаимодействия зарядов в пространстве (электростатику).

Если конденсатор не находится в электрической цепи, то на заряженные частицы, расположенные на его пластинах влияют две силы.
Первая — это сила отталкивания между одноименными зарядами соседних частиц на одной пластине.
Вторая – это сила притяжения разноименных зарядов между частицами, находящимися на противоположных пластинах.

Относительная диэлектрическая проницаемость

Не менее значимым фактором, влияющим на емкость конденсатора, является такое свойство материала между
обкладками как относительная диэлектрическая проницаемость ɛ. Это безразмерная физическая величина,
которая показывает во сколько раз сила взаимодействия двух свободных зарядов в диэлектрике меньше, чем в вакууме.

Материалы с более высокой диэлектрической проницаемостью позволяют обеспечить большую емкость.
Объясняется это эффектом поляризации – смещением электронов атомов диэлектрика в сторону положительно заряженной пластины конденсатора.

Поляризация создает внутренне электрическое поле диэлектрика, которое ослабляет общую разность потенциала
(напряжения) конденсатора. Напряжение U препятствует притоку заряда Q на конденсатор. Следовательно,
понижение напряжения способствует размещению на конденсаторе большего количества электрического заряда.

Ниже приведены примеры значений диэлектрической проницаемости для некоторых изоляционных материалов, используемых в конденсаторах.

  • Порошки оксидов металлов – от 6 до 20
Загрузка ...
Adblock detector