Как определить мощность и потребляемый ток электродвигателя

Как определить ток электродвигателя на практике.

В зависимости от используемого электрического тока двигатели делятся на две группы:

  • приводы постоянного тока;
  • приводы переменного тока.

Электродвигатели постоянного тока сегодня применяются не так часто, как раньше. Их практически вытеснили асинхронные двигатели с короткозамкнутым ротором.

Главный недостаток электродвигателей постоянного тока – возможность эксплуатации исключительно при наличии источника постоянного тока или преобразователя переменного напряжения в постоянный ток. В современном промышленном производстве обеспечение данного условия требует дополнительных финансовых затрат.

Тем не менее, при существенных недостатках этот тип двигателей отличается высоким пусковым моментом и стабильной работой в условиях больших перегрузок. Приводы данного типа чаще всего применяются в металлургии и станкостроении, устанавливаются на электротранспорт.

Принцип работы электродвигателей переменного тока построен на электромагнитной индукции, возникающей в процессе движения проводящей среды в магнитном поле. Для создания магнитного поля используются обмотки, обтекаемые токами, либо постоянные магниты.

Электродвигатели переменного тока подразделяются на синхронные и асинхронные. У каждой подгруппы есть свои конструктивные и эксплуатационные особенности.

Синхронные двигатели – оптимальное решение для оборудования с постоянной скоростью работы: генераторов постоянного тока, компрессоров, насосов и др.

Технические характеристики синхронных электродвигателей разных моделей отличаются. Скорость вращения колеблется в диапазоне от 125 до 1000 оборотов/мин, мощность может достигать 10 тысяч кВт.

В конструкции приводов предусмотрена короткозамкнутая обмотка на роторе. Ее наличие позволяет осуществлять асинхронный пуск двигателя. К преимуществам оборудования данного типа относятся высокий КПД и небольшие габариты. Эксплуатация синхронных электродвигателей позволяет сократить потери электричества в сети до минимума.

Асинхронные электродвигатели переменного тока получили наибольшее распространение в промышленном производстве. Особенностью данных приводов является более высокая частота вращения магнитного поля по сравнению со скоростью вращения ротора.

В современных двигателях для изготовления ротора используется алюминий. Легкий вес этого материала позволяет уменьшить массу электродвигателя, сократить себестоимость его производства.

КПД асинхронного двигателя падает почти вдвое при эксплуатации в режиме низких нагрузок – до 30-50 процентов от номинального показателя. Еще один недостаток таких электроприводов состоит в том, что параметры пускового тока почти втрое превышают рабочие показатели. Для уменьшения пускового тока асинхронного двигателя используются частотные преобразователи или устройства плавного пуска.

Асинхронные электродвигатели удовлетворяют требованиям разных промышленных применений:

  • Для лифтов и другого оборудования, требующего ступенчатого изменения скорости, выпускаются многоскоростные асинхронные приводы.
  • При эксплуатации лебедок и металлообрабатывающих станков используются электродвигатели с электромагнитной тормозной системой. Это обусловлено необходимостью остановки привода и фиксации вала при перебоях напряжения или его исчезновения.
  • В процессах с пульсирующей нагрузкой или при повторно-кратковременных режимах могут использоваться асинхронные электродвигатели с повышенными параметрами скольжения.

Группа вентильных электродвигателей включает в себя приводы, в которых регулирование режима эксплуатации осуществляется посредством вентильных преобразователей.

К преимуществам данного оборудования относятся:

  • Высокий эксплуатационный ресурс.
  • Простота обслуживания за счет бесконтактного управления.
  • Высокая перегрузочная способность, которая в пять раз превышает пусковой момент.
  • Широкий диапазон регулирования частоты вращения, который почти вдвое выше диапазона асинхронных электродвигателей.
  • Высокий КПД при любой нагрузке – более 90 процентов.
  • Небольшие габариты.
  • Быстрая окупаемость.


В режиме постоянной или незначительно изменяющейся нагрузки работает большое количество механизмов: вентиляторы, компрессоры, насосы, другая техника. При выборе электродвигателя необходимо ориентироваться на потребляемую оборудованием мощность.

Определить мощность можно расчетным путем, используя формулы и коэффициенты, приведенные ниже.

где:Рм – потребляемая механизмом мощность;ηп – КПД передачи.

Номинальную мощность электродвигателя желательно выбирать больше расчетного значения.

Формула расчета мощности электродвигателя для насоса

где:K3 – коэффициента запаса, он равен 1,1-1,3;g –ускорение свободного падения;Q – производительность насоса;H – высота подъема (расчетная);Y – плотность перекачиваемой насосом жидкости;ηнас – КПД насоса;ηп – КПД передачи.

Формула расчета мощности электродвигателя для компрессора

где:Q – производительность компрессора;ηk – индикаторный КПД поршневого компрессора (0,6-0,8);ηп – КПД передачи (0,9-0,95);K3 – коэффициент запаса (1,05 -1,15).

или взять из таблицы

p2, 105Па 3 4 5 6 7 8 9 10
A, 10-3 Дж/м³ 132 164 190 213 230 245 260 272

Формула расчета мощности электродвигателя для вентиляторов

где:K3 – коэффициент запаса. Его значения зависят от мощности двигателя:

  • до 1 кВт – коэффициент 2;
  • от 1 до 2 кВт – коэффициент 1,5;
  • 5 и более кВт – коэффициент 1,1-1,2.


Q – производительность вентилятора;H – давление на выходе;ηв – КПД вентилятора;ηп – КПД передачи.

Приведенная формула используется для расчета мощности осевых и центробежных вентиляторов. КПД центробежных моделей равен 0,4-0,7, а осевых вентиляторов – 0,5-0,85.

Остальные технические характеристики, необходимые для расчета мощности двигателя, можно найти в каталогах для каждого типа механизмов.

ВАЖНО! При выборе электродвигателя запас мощности должен быть, но небольшой. При значительном запасе мощности снижается КПД привода. В электродвигателях переменного тока это приводит еще и к снижению коэффициента мощности.

Зная тип и номинальную мощность электродвигателя, можно рассчитать номинальный ток.

Номинальный ток электродвигателей постоянного тока

Номинальный ток трехфазных электродвигателей переменного тока

где:PH – номинальная мощность электродвигателя;UH — номинальное напряжение электродвигателя,ηH — КПД электродвигателя;cosfH — коэффициент мощности электродвигателя.

Номинальные значения мощности, напряжения и КПД можно найти в технической документации на конкретную модель электродвигателя.

Зная значение номинального тока, можно рассчитать пусковой ток.

Формула расчета пускового тока электродвигателей

где:IH – номинальное значение тока;Кп – кратность постоянного тока к номинальному значению.

Пусковой ток необходимо рассчитывать для каждого двигателя в цепи. Зная эту величину, легче подобрать тип автоматического выключателя для защиты всей цепи.

Режим S1 (продолжительный). При таком режиме эксплуатации нагрузка остается постоянной в течение всего времени, пока температура электродвигателя не достигнет необходимого значения. Мощность привода рассчитывается по формулам, приведенным выше.

Режим S2 (кратковременный). При эксплуатации в этом режиме температура двигателя в период его включения не достигает установившегося значения. За время отключения электродвигатель охлаждается до температуры окружающей среды. При кратковременном режиме эксплуатации необходимо проверять перегрузочную способность электропривода.

Режим S3 (периодически-кратковременный). Электродвигатель работает с периодическими отключениями. В периоды включения и отключения его температура не успевает достигнуть заданного значения или охладиться до температуры окружающей среды. При расчете мощности двигателя обязательно учитывается продолжительность пауз и потерь в переходные периоды. При выборе электродвигателя важным параметром является допустимое количество включений за единицу времени.

Предлагаем ознакомиться:  Жилищные субсидии кому положены как рассчитать и оформить

Режимы S4 (периодически-кратковременный, с частыми пусками) и S5 (периодически-кратковременный с электрическим торможением). В обоих случаях работа двигателя рассматривается по тем же параметрам, что и в режиме эксплуатации S3.

Режим S6 (периодически-непрерывный с кратковременной нагрузкой). Работа электродвигателя в данном режиме предусматривает эксплуатацию под нагрузкой, чередующуюся с холостым ходом.

Режим S7 (периодически-непрерывный с электрическим торможением)

Режим S8 (периодически-непрерывный с одновременным изменением нагрузки и частоты вращения)

Режим S9 (режим с непериодическим изменением нагрузки и частоты вращения)


Большинство моделей современных электроприводов, эксплуатируемых продолжительное время, адаптированы к изменяющемуся уровню нагрузки.

При выборе электродвигателя учитываются не только его технические характеристики, но и условия окружающей среды, в которых он будет эксплуатироваться.

Современные электроприводы выпускаются в разных климатических исполнениях. Категории маркируются соответствующими буквами и цифрами:

  • У – модели для эксплуатации в умеренном климате;
  • ХЛ – электродвигатели, адаптированные к холодному климату;
  • ТС – исполнения для сухого тропического климата;
  • ТВ – исполнения для влажного тропического климата;
  • Т – универсальные исполнения для тропического климата;
  • О – электродвигатели для эксплуатации на суше;
  • М – двигатели для работы в морском климате (холодном и умеренном);
  • В – модели, которые могут использоваться в любых зонах на суше и на море.

Расчет тока электродвигателя

Перед этим я уже немного затрагивал темы электродвигателей, когда писал о том как запустить асинхронные двигателей. и когда писал какие бывают номиналы электродвигателей .

Ну а теперь приступим конкретно к самому расчёту. Допустим: у вас есть трёхфазный асинхронный электродвигателей переменного тока, номинальная мощность, которого составляет 25 кВт, и вам хочется узнать какой же у него будет номинальный ток.

Для этого существует специальная формула: Iн = 1000Pн /√3•(ηн • Uн • cosφн ),

Где Pн – это мощность электродвигателя; измеряется в кВт

Uн – это напряжение, при котором работает электродвигатель; В

ηн – это коэффициент полезного действия, обычно это значение 0.9

ну и cosφн – это коэффициент мощности двигателя, обычно 0.8.

Последние два значения обычно пишутся на заводской бирке, хотя они у всех двигателей практически одинаковые. Но все же нужно брать данные именно с заводской бирки на двигателе.

Вот как на этой картинке все значения видны, а ток нет. Только если КПД написан 81%, то для расчёта нужно брать 0.81.

Теперь подставим значения Iн = 1000•25/√3 • (0.9 • 380 • 0.8) = 52.81 А

Тем, кто не помнит, сколько будет √3, напоминаю – это будет 1,732

Вот и всё, все расчёты закончены. Всё очень легко и просто. По моему образцу вы можете легко рассчитать номинальный ток электродвигателя, вам всего лишь нужно подставить своих данных.

Мощность электродвигателя

Вы должны иметь ввиду, что в паспорте или на табличке указывается номинальная мощность, которая будет равна этому значению только при условии достижения оптимальной нагрузки на вал. При чем перегружать не стоит вал по целому ряду причин, лучше выбрать по мощнее мотор. На холостом ходу величина тока будет гораздо ниже номинала.

Как же определить номинальную мощность электродвигателя? В интернете Вы найдете много различных формул и расчетов. Для некоторых необходимо помереть размеры статора, для других формул понадобится знать величину тока, КПД и cos(fi). Мой совет не заморачивайтесь со всем этим. Лучше этих расчетов все равно будут практические измерения. И для их проведения ничего не понадобится вообще.

Как определить мощность любого электроприбора в доме или гараже? Конечно с помощью счетчика электроэнергии. Перед началом измерения отключите все электроприборы из розеток, освещение и все то, что подключено от электрощита.

Далее если у Вас электронный счетчик типа Меркурий, все очень просто надо включить мотор под нагрузкой и погонять минут 5. На электронном табло должна высветится величина нагрузки в кВт, подключенная к счетчику в данный момент.

Пусковой ток двигателя определяется как

1) по условию нагрева от протекаемого тока

где — поправочный коэффициент на условия прокладки;

2) по условию соответствия аппарату МТЗ (максимальной токовой защиты), установленного в начале линии

где — номинальный ток защитного аппарата, А; — кратность длительного допустимого тока провода по отношению к току срабатывания защиты.

При определении количества проводов, прокладываемых в одной трубе, или жил многожильного проводника, нулевой рабочий проводник, а также заземляющие и нулевые защитные проводники в расчёт не принимаем. Для цеховых электрических сетей принимаем провода и кабели с алюминиевыми жилами, тогда по механической прочности минимальные сечения алюминиевых жил проводов и кабелей внутри помещений не менее 4мм 2 при прокладке на изоляторах, 2,5мм 2 ¾ при других способах прокладки.

Приведем пример выбора электродвигателей, пусковых и защитных аппаратов электропривода горизонтально-расточного станка, состоящего из трех двигателей.

1) АИР132М4¾ P=11,0 кВт, h=87,5 %, cosj=0,87, Кп =7,5;

2) АИР112М4¾ Р=5,5 кВт, h=87,5 %, cosj=0,88, Кп =7;

3) АИР80В4¾ Р=1,5 кВт, h=78 %, cosj=0,83, Кп =5,5;

Согласно (2.2) выберем тепловое реле для первого двигателя

Выбираем тепловое реле типа РТЛ-206104 со средним значением тока теплового реле Iср.т.р. = 27,5 А и номинальным током теплового реле Iном..р. = 80 А.

Для второго электродвигателя

Выбираем тепловое реле типа РТЛ-101604 со средним значением тока теплового реле Iср.т.р. = 12 А и номинальным током теплового реле Iном..р. = 25 А.

Для третьего электродвигателя

Выбираем тепловое реле типа РТЛ-101604 со средним значением тока теплового реле Iср.т.р. =5 А и номинальным током теплового реле Iном..р. = 25 А.

Чтобы определить расчетный ток станка в целом, используем метод определения электрических нагрузок с помощью коэффициента расчетной нагрузки, который будет подробнее изложен далее.

По таблице 2.1 для данного станка и .

Эффективное число электроприемников

принимаем при этом по таблицам [метод к курсовому проектированию] .

Тогда расчетная мощность станка

Так как . то принимаем за расчетный ток 21,954 А. Пиковый ток станка определяем по формуле (3.2.5)

· первого электродвигателя станка ВА51Г-25 с . По (3.9)

По (3.2.8) ток срабатывания расцепителя . что удовлетворяет условию (3.2.7): ;

· второго двигателя ВА51Г-25 с . . . . ;

· третьего двигателя ВА51Г-25 с . . . . .

По условию (3.2.3) и (3.2.4) выбираем предохранитель типа ПН2-100/100 для защиты станка: и .

Сечение провода, идущего от рассматриваемого станка к распределительному шкафу, выбираем по условиям (3.2.12) и (3.2.13): и . В итоге выбираем по литературе [4] провод АПВ 5(1´8) с .

Для электропривода с одним двигателем расчёт аналогичен трехдвигательному электроприводу, исключение лишь составляет расчётный ток, который принимаем равным номинальному току двигателя. Все расчеты сводятся в таблицы 3.2.3, 3.2.4, 3.2.5 и 3.2.6.

Предлагаем ознакомиться:  Как рассчитать налог на автомобиль

Таблица 3.2.3- Выбор магнитных пускателей и тепловых реле

А ток холостого хода будет обычно в два раза меньше, чем его мощность. Но про то, как определить эти значения, мы поговорим с вами в следующих статьях. Так что подписывайтесь на обновления и не забываете поделиться этой статьёй со своими друзьями в социальных сетях.

На этом у меня всё. Пока.

С уважением Александр!

Для определения тока в однофазных сетях, необходимо мощность разделить на напряжение. Например, при работе двигателя напряжение в месте его подключения равно 230 Вольт. Это важно так, как после включения нагрузки напряжение скорее всего понизится в месте подключения электродвигателя.

Если например, мощность мотора на 220 Вольт по измерениям оказалась равной 1.5 кВт или 1500 Ватт. Делим 1500 на 230 Вольт и получаем, что рабочий ток двигателя приблизительно равен 6.5 Ампер.

Инструкция

Определите тип электродвигателя. Это может быть электродвигатель постоянного тока или трехфазного переменного тока. Рассчитайте номинальный ток электродвигателя постоянного тока в амперах, используя формулу: IH=1000PH/(?HUH), а номинальный ток электродвигателя трехфазного тока по формуле: IH=1000PH/(UHcos?H??

H), где:Рн — номинальная мощность двигателя, квт-UH — номинальное напряжение двигателя, в-?H — номинальный коэффициент полезного действия двигателя-cos фн — номинальный коэффициент мощности двигателя. Данные о номинальной мощности, номинальном напряжении, КПД и коэффициенте мощности возьмите из технической документации электродвигателя.

Вычислите величину пускового тока в амперах после расчета его номинальной величины. Для расчета используйте формулу:IП=IH*Кп, где IH — номинальная величина тока, а Кп — кратность постоянного тока к его номинальной величине. Просмотрите техническую документацию на электродвигатель, в ней должна быть указана кратность постоянного тока к его номинальной величине (Кп).

Подберите автоматический выключатель для защиты линии включения в зависимости от получившейся величины пускового тока по всем электродвигателям в цепи. Для выбора необходимо знать, что автоматические выключатели могут быть типа отключения В, С и Д. Выключатели с характеристикой отключения типа В подойдут для осветительных сетей общего назначения, с характеристикой отключения типа С служат для размыкания осветительных цепей и установок с умеренными пусковыми токами (двигатели и трансформаторы).

Обратите внимание

У автоматических выключателей с характеристикой типа С перегрузочная способность магнитного размыкателя вдвое выше по сравнению с выключателями с характеристикой типа B.

Климатические исполнения электродвигателей

  • 1 – возможность эксплуатации на открытых площадках;
  • 2 – установка в помещениях со свободным доступом воздуха;
  • 3 – эксплуатация в закрытых цехах и помещениях;
  • 4 – использование в производственных и других помещениях с возможностью регулирования климатических условий (наличие вентиляции, отопления);
  • 5 – исполнения, разработанные для эксплуатации в зонах повышенной влажности, с высоким образованием конденсата.

Энергоэффективность

Рациональное потребление энергии при сохраняющейся высокой мощности сокращает текущие производственные затраты при одновременном увеличении производительности электродвигателя. Поэтому при выборе привода обязательно учитывается класс энергоэффективности.

В технической документации и каталогах обязательно указывается класс энергоэффективности двигателя. Он зависит от показателя КПД.

Проводимые в тестовом и рабочем режимах экспериментальные исследования показывают, что электродвигатель мощностью 55 кВт высокого класса энергоэффективности сокращает потребление электроэнергии на 8-10 тысяч кВт ежегодно.

Другие полезные материалы:Редуктор от «А» до «Я»Как выбрать мотор-редукторВыбор преобразователя частотыПодключение и настройка частотного преобразователя

Что это значит?

Для запуска автомобильного двигателя стартеру требуется приложить к коленвалу значительное усилие. Требуется не только сдвинуть все подвижные детали с места, но и сжать топливную смесь для обеспечения зажигания, а это от 9 до 16 атмосфер для различных двигателей. Для выполнения такой работы требуется большое количество энергии.

Для запуска каждого конкретного автомобиля потребуется индивидуальное количество тока. Это зависит от ряда условий.

  • Тип двигателя: бензиновый/дизельный (Для запуска исправного бензинового мотора 1,5 л. пусковой ток — в среднем 180 Ампер. Пусковой ток для дизельного двигателя 1,5 л. — 300 Ампер.)
  • Температура окружающей среды и температура масла в двигателе (тут применим термин — ток холодной прокрутки)
  • Объём двигателя (чем больше мотор — тем труднее его запустить)
  • Степень сжатия двигателя

Стоит отметить что пуск двигателя происходит не моментально, в среднем стартеру потребуется от 0.3 до 1.5 секунд в нормальных условиях. За это время двигатель внутреннего сгорания достигает своих пусковых оборотов.

Пусковые обороты двигателя — это то количество оборотов коленчатого вала в минуту, при котором двигатель может продолжать работу самостоятельно. Сегодняшние бензиновые моторы способны запускаться и самостоятельно поддерживать свою работу уже при 40 — 70 оборотах в минуту, дизельные при 100 — 200 оборотах.

Стартер раскручивает и запускает двигатель за доли секунды, при этом потребляя из аккумулятора ток в сотни ампер. Аккумулятор в этот момент работает на максимум, значительно разряжаясь, выдавая необходимый пусковой ток и неизбежно проседая по показателю напряжения.

Для лучшего понимания происходящего с аккумулятором разберём осциллограмму напряжения и тока снятую с контактов стартера.

Здесь показан запуск бензинового двигателя с объёмом в 1.5 литра, используя АКБ емкостью 60 Ач с пусковым током EN 500 А. На запуск мотора потребовалось 1.2 секунды времени, которое отмечено шкалой внизу изображения, за это время скорость коленвала поднялась до 200 оборотов в минуту.

  • Красным цветом на графике показано изменение силы тока (Ампер) со шкалой слева.
  • Синим цветом раскрашен график напряжения (Вольт) шкала справа.

Прекрасно видно что в первые миллисекунды запуска потребляемый ток молниеносно поднялся до показателя в 350 ампер, в то же время произошла просадка напряжения до 8.5 вольт. Но уже через 1 десятую долю секунды потребляемый ток снизился больше чем в 2 раза и составил 125 ампер, а напряжение поднялось выше 10 вольт.

Оставшееся время (чуть более секунды) стартер потреблял около 75 ампер, со скачками при зажигании в каждом из цилиндров. Вольтаж ровно повышался до 12 вольт по окончании запуска, и после повысился до 14 вольт — пошёл процесс зарядки аккумулятора.

Предлагаем ознакомиться:  Как пить ацетилсалициловую кислоту для разжижения крови

Становится понятно что каждый пуск двигателя становится для аккумулятора небольшой проверкой напрочность.

Благодаря тому, что время затрачиваемое на запуск двигателя достаточно мало (около 30 сек.), средних показателей аккумулятора хватает, чтобы автомобиль заводился с первой попытки.

Методы проверки

Процедура проверки создана так, чтобы воспроизвести условия при зимнем запуске автомобиля. Это не самый простой способ оценить пусковой ток. Но он считается самым надёжным.

Стандарты определяются следующим образом:

  • Аккумулятор помещают в рефрижератор и снижают температуру до -18оС.
  • После этого на прибор направляют разрядный ток, который равен номинальному пусковому току. Допустим, у прибора пусковой ток равен 300А, значит, разрядный ток должен быть тоже 300А.
  • Чтобы прибор прошёл испытание, его напряжение не должно падать ниже установленного стандарта.

Но для начала надо сказать пару слов о мировых стандартах, которые напрямую влияют на конечный результат. А всё дело в том, что в разных странах пусковой ток имеет свои нормы.

Существуют ещё так называемые пусковые тестеры. Они индуцируют мощный импульс, который соответствует номинальному пусковому току. С помощью закона Ома, прибор вычисляет сопротивление аккумулятора, а после этого считывает данные о пусковом токе. Таким способом проверить данные можно гораздо быстрее. Но результат может быть не совсем точным.

Какой должен быть ток холодной прокрутки?

Пусковой ток иногда ещё называют током холодной прокрутки. Но некоторые автолюбители задают вопрос: «Каким он должен быть». При покупке накопительной батареи этот параметр играет немаловажную роль. Хотя всё на самом деле очень просто. Например, чтобы завести двигатель, необходимо 500А. Поэтому выбираем аккумулятор на 100А больше.

Если использовать устройство с точно такими же показателями или меньшей силой тока, тогда прибор очень быстро выйдет из строя.

Ещё одну немаловажную роль играет тип двигателя. Дизельные моторы имеют предпусковые подогреватели. Поэтому ток холодной прокрутки должен быть не меньше 350А.

Бензиновые моторы не нуждаются в больших показателях тока холодной прокрутки. Для них достаточно 100А. А для холодных регионов нудно брать приборы как минимум с 225А.

Пусковой ток и объём разных аккумуляторных батарей.

Наименование аккумулятора (в скобках указан стандарт) Пусковой ток (А) Ёмкость (Ач)
Varta 6СТ-60 BLUE dynamic (D47) (DIN) 540 60
Forse 6СТ-60 Аз (En) 600 60
BOSCH 6CT-60 S4 SILVER (S40 060) (EN / DIN) 540 / 324 60
Varta 6СТ-60 Silver Dynamic AGM (D52) (EN) 680 60
Bosch 6CT-95 S6 AGM HighTec (S60 130) (EN) 850 95
AGM Exide ES2400 (EN) 210 630
Cartechnic 6Ст-225 АзЕ CART725012115 1150 225

Ток холодной прокрутки — весьма важный показатель, особенно для погодных условий нашей страны. В южных регионах аккумулятор чувствует себя достаточно комфортно. Поэтому на параметры пускового тока даже не смотрят.

Другое дело северные районы. Жители этих регионов должны обращать внимание на этот показатель. Так как холодные условия превращают масло в густую массу, которая затрудняет запуск двигателя.

Двигатели в тёплых регионах при температуре от 1 до 5оС спокойно запускаются при 200 – 220 Ам. Но, когда температура падает до -10 или -15оС, здесь уже требуется мощности на 30% больше. Т.е. выбирать батарею нужно на 260 или 270 Ам. А когда она падает до -30 или -40оС, сила электрического тока возрастает ещё больше.

На что влияют остальные характеристики?

Кроме пускового тока, на коробке есть множество характеристик. И неопытный автолюбитель может просто растеряться и выбрать накопительную батарею, которая быстро выйдет из строя.

Поэтому для новичков следует обращать внимание на следующие параметры.

Ёмкость. Один из основных параметров аккумулятора. Чем выше этот показатель, тем больше энергии он сможет накопить. Измеряется ёмкость в Ач (Амперы, умноженные на часы). Но следует учитывать тот факт, что большой объём аккумулятора – это не значит, что он лучше. Все накопительные приборы рано или поздно выходят из строя.

Объём двигателя Ёмкость аккумулятора
1 – 1,6л 55Ач
1,3 – 1,9л 60АЧ
1,4 – 2,3л 66Ач
1,9 – 4,5л. 90Ач
7,5 – 17л 200Ач
7,2 – 12л 190Ач
3,8 – 10,9л 140Ач

Есть ещё одна деталь. Буква «С» несёт дополнительную информацию. А именно – какая ёмкость имеет батарея в определённый промежуток времени.

Напряжение батареи – это параметр, который определяет, насколько заряжен прибор и как быстро он будет изнашиваться. Измеряется в вольтах (В). Но в современных машинах прибор для измерения этого параметра отсутствует. Поэтому рекомендуется приобрести мультиметр. Чтобы определить напряжение, необходимо отключить аккумулятор от зарядного устройства и потратить несколько часов на эту процедуру.

Глубина разряда – это допустимая норма разрядки батареи. Измеряется в процентах. Если разряжать батарею на 100% несколько раз подряд до показания напряжения 9В – любой, даже самый дорогой аккумулятор выводиться из строя очень быстро.

Поэтому, следует обращать внимание на этот параметр. Правда, все накопительные приборы имеют рекомендуемую глубину разряда и допустимую глубину разряда. Допустимая норма указывается в инструкции по эксплуатации. Но лучше не рисковать.

Срок эксплуатации прибора немаловажный показатель. Например, свинцово-кислотные аккумуляторы подходят для самых разных режимов работы, но их служба намного меньше, чем другие батареи. Но в инструкции указываются средние показатели сроков службы. Т.е. – если автолюбитель не перенапрягает прибор, он послужит столько, сколько указано на коробке.

Диапазон рабочей температуры основан на химических реакциях, которые происходят внутри прибора. Исключением считается литий-ионные батареи, где в качестве накопительного элемента используется минерал. Следовательно, температура окружающей среды очень сильно влияет на работу аккумулятора.

Если на пусковой ток влияет низкая температура, то в случае с «диапазоном рабочей температуры» происходит обратный процесс. И чем выше температура окружающей среды, тем ниже срок эксплуатации прибора. Но низкие показатели уменьшают ёмкость батареи.

Заключение

Параметр тока холодной прокрутки очень важен для запуска двигателя. И чем холоднее регион, тем выше должно быть его значение. Покупая аккумулятор, автолюбитель должен рассмотреть не только этот параметр. Всё зависит от того, в каких условиях проходит эксплуатация машины. Если это жаркие районы, следует обращать внимание на «саморазряд батареи» и «диапазон рабочей температуры». Но если машина работает в холодных условиях, необходимо выбирать батарею с большими значениями пускового тока.

Загрузка ...
Adblock detector